This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295368 #23 Feb 19 2018 14:46:35 %S A295368 1,2,3,4,3,10,3,8,7,10,3,40,3,10,15,16,3,42,3,36,15,10,3,160,7,10,15, %T A295368 36,3,178,3,32,15,10,15,328,3,10,15,144,3,170,3,36,63,10,3,640,7,42, %U A295368 15,36,3,170,15,144,15,10,3,2696,3,10,63,64,15,170,3,36,15 %N A295368 For any number n > 0 with s divisors, say d_1, d_2, ..., d_s such that d_1 = 1 < d_2 < ... < d_s = n, the binary representation of a(n) is (d_1 mod 2, d_2 mod 2, ..., d_s mod 2). %C A295368 This sequence encodes in binary the parity of the divisors of a number. %C A295368 For any n > 0, the binary representation of a(n) corresponds to the n-th row of A247795. %C A295368 For any n > 0, n and a(n) have the same parity. %H A295368 Rémy Sigrist, <a href="/A295368/b295368.txt">Table of n, a(n) for n = 1..10000</a> %H A295368 Rémy Sigrist, <a href="/A295368/a295368.png">Colored logarithmic scatterplot of the first 100000 terms</a> (where the color is function of A000005(n)) %F A295368 a(2^k) = 2^k for any k >= 0. %F A295368 a(p) = 3 iff p is an odd prime. %F A295368 a(n) > 3 iff n is composite. %F A295368 A070939(a(n)) = A000005(n) for any n > 0. %F A295368 A000120(a(n)) = A001227(n) for any n > 0. %F A295368 A023416(a(n)) = A183063(n) for any n > 0. %F A295368 A000120(a(n)) = A023416(a(n)) iff n belongs to A016825. %t A295368 Array[FromDigits[Mod[#, 2] & /@ Divisors@ #, 2] &, 69] (* _Michael De Vlieger_, Feb 18 2018 *) %o A295368 (PARI) a(n) = fromdigits(apply(d -> d%2, divisors(n)), 2) %Y A295368 Cf. A000005, A000120, A001227, A016825, A023416, A070939, A183063, A247795. %K A295368 nonn,base %O A295368 1,2 %A A295368 _Rémy Sigrist_, Feb 18 2018