This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295369 #40 Dec 12 2023 08:28:22 %S A295369 0,0,1,18,610,216054,12566567699 %N A295369 Number of squarefree primitive abundant numbers (A071395) with n prime factors. %C A295369 Here primitive abundant number means an abundant number all of whose proper divisors are deficient numbers (A071395). The alternative definition (an abundant number having no abundant proper divisor, see A091191) would yield an infinite count for a(3): since 2*3 = 6 is perfect, all numbers of the kind 2*3*p with p > 3 would be primitive abundant. %C A295369 See A287590 for the number of squarefree ODD primitive abundant numbers with n prime factors. %C A295369 The actual numbers are listed in A298973. - _M. F. Hasler_, Feb 16 2018 %H A295369 Gianluca Amato, <a href="https://github.com/amato-gianluca/weirds">Primitive Weirds and Abundant Numbers</a>, GitHub. %H A295369 Gianluca Amato, Maximilian F. Hasler, Giuseppe Melfi, and Maurizio Parton, <a href="https://arxiv.org/abs/1802.07178">Primitive abundant and weird numbers with many prime factors</a>, arXiv:1802.07178 [math.NT], 2018. %e A295369 For n=3, the only squarefree primitive abundant number (SFPAN) is 2*5*7 = 70, which is also a primitive weird number, see A002975. %e A295369 For n=4, the 18 SFPAN range from 2*5*11*13 = 1430 to 2*5*11*53 = 5830. %e A295369 For n=5, the 610 SFPAN range from 3*5*7*11*13 = 15015 to 2*5*11*59*647 = 4199030. %o A295369 (PARI) %o A295369 A295369(n, p=1, m=1, sigmam=1) = { %o A295369 my(centerm = sigmam/(2*m-sigmam), s=0); %o A295369 if (n==1, %o A295369 if (centerm > p, primepi(ceil(centerm)-1) - primepi(p), 0), %o A295369 p = max(floor(centerm),p); while (0<c=A295369(n-1, p=nextprime(p+1), m*p, sigmam*(p+1)), s+=c); s %o A295369 ) %o A295369 } %o A295369 (SageMath) %o A295369 def A295369(n, p=1, m=1, sigmam=1): %o A295369 centerm = sigmam/(2*m-sigmam) %o A295369 if n==1: %o A295369 return prime_pi(ceil(centerm)-1) - prime_pi(p) if centerm > p else 0 %o A295369 else: %o A295369 p = max(floor(centerm), p) %o A295369 s = 0 %o A295369 while True: %o A295369 p = next_prime(p) %o A295369 c = A295369(n-1, p, m*p, sigmam*(p+1)) %o A295369 if c <= 0: return s %o A295369 s+=c %Y A295369 Cf. A071395 (primitive abundant numbers), A287590 (counts of odd SFPAN), A298973, A249242 (using A091191). %K A295369 nonn,hard,more %O A295369 1,4 %A A295369 _Gianluca Amato_, Feb 12 2018