This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295370 #31 Nov 20 2023 11:14:15 %S A295370 1,1,2,4,18,80,482,3280,26244,231148,2320130,25238348,302834694, %T A295370 3909539452,54761642704,816758411516,13076340876500,221396129723368, %U A295370 3985720881222850,75503196628737920,1510373288335622576,31634502738658957588,696162960370556156224,15978760340940405262668 %N A295370 Number of permutations of [n] avoiding three consecutive terms in arithmetic progression. %C A295370 These are permutations of n whose second-differences are nonzero. - _Gus Wiseman_, Jun 03 2019 %H A295370 Wikipedia, <a href="https://en.wikipedia.org/wiki/Arithmetic_progression">Arithmetic progression</a> %H A295370 <a href="/index/No#non_averaging">Index entries related to non-averaging sequences</a> %e A295370 a(3) = 4: 132, 213, 231, 312. %e A295370 a(4) = 18: 1243, 1324, 1342, 1423, 2134, 2143, 2314, 2413, 2431, 3124, 3142, 3241, 3412, 3421, 4132, 4213, 4231, 4312. %p A295370 b:= proc(s, j, k) option remember; `if`(s={}, 1, %p A295370 add(`if`(k=0 or 2*j<>i+k, b(s minus {i}, i, %p A295370 `if`(2*i-j in s, j, 0)), 0), i=s)) %p A295370 end: %p A295370 a:= n-> b({$1..n}, 0$2): %p A295370 seq(a(n), n=0..12); %t A295370 Table[Length[Select[Permutations[Range[n]],!MemberQ[Differences[#,2],0]&]],{n,0,5}] (* _Gus Wiseman_, Jun 03 2019 *) %t A295370 b[s_, j_, k_] := b[s, j, k] = If[s == {}, 1, Sum[If[k == 0 || 2*j != i + k, b[s~Complement~{i}, i, If[MemberQ[s, 2*i - j ], j, 0]], 0], {i, s}]]; %t A295370 a[n_] := a[n] = b[Range[n], 0, 0]; %t A295370 Table[Print[n, " ", a[n]]; a[n], {n, 0, 16}] (* _Jean-François Alcover_, Nov 20 2023, after _Alois P. Heinz_ *) %Y A295370 Column k=0 of A295390. %Y A295370 Cf. A003407, A174080, A238423, A238424, A338765. %Y A295370 Cf. A049988, A175342, A279945, A325545, A325849, A325850, A325851, A325874, A325875. %K A295370 nonn %O A295370 0,3 %A A295370 _Alois P. Heinz_, Nov 20 2017 %E A295370 a(22)-a(23) from _Vaclav Kotesovec_, Mar 22 2022