cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295440 a(n) = (18*n)!*(4*n)!*(3*n)!/((9*n)!*(8*n)!*(6*n)!*(2*n)!).

This page as a plain text file.
%I A295440 #12 Jul 11 2025 05:18:53
%S A295440 1,43758,7012604550,1288415796384780,250622090889055155270,
%T A295440 50312973039218473430585508,10304958075870392958137083227804,
%U A295440 2140123855549810059379592073872919000,449006091012360080585628994760351491412550,94939602104589721712783038933265704553286808500
%N A295440 a(n) = (18*n)!*(4*n)!*(3*n)!/((9*n)!*(8*n)!*(6*n)!*(2*n)!).
%F A295440 G.f.: hypergeom([1/18, 5/18, 7/18, 11/18, 13/18, 17/18], [1/8, 3/8, 1/2, 5/8, 7/8], 14348907/64*x).
%F A295440 D-finite with recurrence n*(8*n-5)*(8*n-3)*(8*n-1)*(2*n-1)*(8*n-7)*a(n) -54*(18*n-11)*(18*n-7)*(18*n-17)*(18*n-13)*(18*n-5)*(18*n-1)*a(n-1)=0. - _R. J. Mathar_, Jan 13 2025
%F A295440 a(n) ~ 3^(15*n) / (2^(6*n + 3/2) * sqrt(Pi*n)). - _Vaclav Kotesovec_, Jul 11 2025
%t A295440 f[n_] := (18n)! (4n)! (3n)!/((9n)! (8n)! (6n)! (2n)!); Array[f, 10, 0] (* or *)CoefficientList[ Series[ HypergeometricPFQ[{1/18, 5/18, 7/18, 11/18, 13/18, 17/18}, {1/8, 3/8, 1/2, 5/8, 7/8}, 14348907/64 x], {x, 0, 9}], x] (* _Robert G. Wilson v_, Nov 23 2017 *)
%Y A295440 Cf. A295431.
%K A295440 nonn
%O A295440 0,2
%A A295440 _Gheorghe Coserea_, Nov 23 2017