This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295510 #11 Mar 24 2020 03:24:05 %S A295510 2,2,3,3,7,5,7,2,17,7,11,5,11,13,5,3,241,17,29,7,17,31,43,13,43,11,17, %T A295510 13,29,193,11,2,13,11,37,73,67,29,41,7,23,97,79,31,73,29,19,5,37,43, %U A295510 73,31,157,17,23,13,41,43,199,17,19,11,7 %N A295510 The numerators of the fractions in the Schinzel-Sierpiński tree A295511, read across levels. Also an encoding of Stern's diatomic series A002487. %e A295510 The triangle (row lengths are 2^(n-1)) starts: %e A295510 1: 2 %e A295510 2: 2, 3 %e A295510 3: 3, 7, 5, 7 %e A295510 4: 2, 17, 7, 11, 5, 11, 13, 5 %e A295510 5: 3, 241, 17, 29, 7, 17, 31, 43, 13, 43, 11, 17, 13, 29, 193, 11 %o A295510 (Sage) # uses[SSETree from A295511] %o A295510 def A295510_row(n): %o A295510 if n == 1: return [2] %o A295510 return [r.numerator() for r in SSETree(n)] %o A295510 for n in (1..6): print(A295510_row(n)) %Y A295510 Cf. A002487, A295510, A295512. %K A295510 nonn,tabf %O A295510 1,1 %A A295510 _Peter Luschny_, Nov 23 2017