A295511 The Schinzel-Sierpiński tree of fractions, read across levels.
2, 2, 2, 3, 3, 2, 3, 7, 7, 5, 5, 7, 7, 3, 2, 5, 17, 13, 7, 11, 11, 5, 5, 11, 11, 7, 13, 17, 5, 2, 3, 11, 241, 193, 17, 29, 29, 13, 7, 17, 17, 11, 31, 43, 43, 13, 13, 43, 43, 31, 11, 17, 17, 7, 13, 29, 29, 17, 193, 241, 11, 3
Offset: 1
Examples
The tree starts: 2/2 2/3 3/2 3/7 7/5 5/7 7/3 2/5 17/13 7/11 11/5 5/11 11/7 13/17 5/2 . The numerators of the terms written as an array (the denominators are given by reversion of the arrays): 1: 2 2: 2, 3 3: 3, 7, 5, 7 4: 2, 17, 7, 11, 5, 11, 13, 5 5: 3, 241, 17, 29, 7, 17, 31, 43, 13, 43, 11, 17, 13, 29, 193, 11
References
- E. Dijkstra, Selected Writings on Computing, Springer, 1982, p. 232.
Links
- N. Calkin and H. S. Wilf, Recounting the rationals, Amer. Math. Monthly, 107 (No. 4, 2000), pp. 360-363.
- Matthew M. Conroy, A sequence related to a conjecture of Schinzel, J. Integ. Seqs. Vol. 4 (2001), #01.1.7.
- P. D. T. A. Elliott, The multiplicative group of rationals generated by the shifted primes. I., J. Reine Angew. Math. 463 (1995), 169-216.
- P. D. T. A. Elliott, The multiplicative group of rationals generated by the shifted primes. II. J. Reine Angew. Math. 519 (2000), 59-71.
- Peter Luschny, The Schinzel-Sierpiński conjecture and the Calkin-Wilf tree.
- A. Malter, D. Schleicher, D. Zagier, New looks at old number theory, Amer. Math. Monthly, 120 (2013), 243-264.
- A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arithmetica 4 (1958), 185-208; erratum 5 (1958) p. 259.
Programs
-
Sage
def EuclidTree(n): # with root 1 def DijkstraFusc(m): a, b, k = 1, 0, m while k > 0: if k % 2 == 1: b += a else: a += b k = k >> 1 return b DF = [DijkstraFusc(k) for k in (2^(n-1)..2^n)] return [DF[j]/DF[j+1] for j in (0..2^(n-1)-1)] def SchinzelSierpinski(l): a, b = l.numerator(), l.denominator() p, q = 1, 2 while q < 1000000000: # search limit r = a*(q - 1) if b.divides(r): p = r // b + 1 if is_prime(p): return p/q q = next_prime(q) print("Search limit reached for ", l); return 0 def SSETree(level): return [SchinzelSierpinski(l) for l in EuclidTree(level)] # With the imperfection that Sage reduces 2/2 automatically to 1. for level in (1..6): print(SSETree(level))
Comments