cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295517 Triangle read by rows, T(n, k) the coefficients of some polynomials in Pi, for n >= 0 and 0 <= k <= n.

This page as a plain text file.
%I A295517 #5 Dec 18 2017 04:15:49
%S A295517 1,2,-1,6,-5,-1,27,-31,-11,1,167,-252,-136,28,1,1310,-2491,-1864,656,
%T A295517 94,-1,12394,-28603,-27583,13952,3718,-421,-1,137053,-372765,-440425,
%U A295517 290431,113119,-24739,-2379,1,1733325,-5433312,-7596496,6162480,3142746,-1010144,-189768,16080,1
%N A295517 Triangle read by rows, T(n, k) the coefficients of some polynomials in Pi, for n >= 0 and 0 <= k <= n.
%F A295517 Consider the polynomial p_n(x) with e.g.f. exp(-x)/(1 + log(-1-x)). After multiplying with -(Pi-1)^(n+1) and then substituting i by 1 this becomes a polynomial in Pi, the coefficients of which in ascending order constitute row n of the triangle. The constant coefficients are A291979.
%e A295517 The first few polynomials are:
%e A295517                                1
%e A295517                              2 - Pi
%e A295517                          6 - 5 Pi - Pi^2
%e A295517                    27 - 31 Pi - 11 Pi^2  + Pi^3
%e A295517              167 - 252 Pi - 136 Pi^2  + 28 Pi^3  + Pi^4
%e A295517        1310 - 2491 Pi - 1864 Pi^2  + 656 Pi^3  + 94 Pi^4  - Pi^5
%e A295517 12394 - 28603 Pi - 27583 Pi^2 + 13952 Pi^3 + 3718 Pi^4 - 421 Pi^5 - Pi^6
%e A295517 The triangle starts:
%e A295517 0:      1
%e A295517 1:      2,      -1
%e A295517 2:      6,      -5,      -1
%e A295517 3:     27,     -31,     -11,      1
%e A295517 4:    167,    -252,    -136,     28,      1
%e A295517 5:   1310,   -2491,   -1864,    656,     94,     -1
%e A295517 6:  12394,  -28603,  -27583,  13952,   3718,   -421,    -1
%e A295517 7: 137053, -372765, -440425, 290431, 113119, -24739, -2379, 1
%p A295517 A295517_poly := proc(n) assume(x<-1); exp(-x)/(1 + log(-1-x)): series(%, x, n+1):
%p A295517 simplify(-(Pi-1)^(n+1)*n!*coeff(%, x, n)); subs(I=1, %) end:
%p A295517 seq(seq(coeff(A295517_poly(n), Pi, k), k=0..n), n=0..8);
%Y A295517 Cf. A291979.
%K A295517 sign,tabl
%O A295517 0,2
%A A295517 _Peter Luschny_, Dec 17 2017