cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295559 Same as A161645 except that triangles must always grow outwards.

This page as a plain text file.
%I A295559 #17 Dec 27 2017 02:05:23
%S A295559 0,1,3,6,6,6,12,18,12,6,12,18,18,18,30,42,24,6,12,18,18,18,30,42,30,
%T A295559 18,30,42,42,42,66,90,48,6,12,18,18,18,30,42,30,18,30,42,42,42,66,90,
%U A295559 54,18,30,42,42,42,66,90,66,42,66,90,90,90,138,186,96,6,12
%N A295559 Same as A161645 except that triangles must always grow outwards.
%C A295559 Note that Reed's version has errors (see A295558).
%D A295559 R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6. [Describes the dual structure where new triangles are joined at vertices rather than edges.]
%H A295559 Lars Blomberg, <a href="/A295559/b295559.txt">Table of n, a(n) for n = 0..10000</a>
%H A295559 R. Reed, <a href="/A005448/a005448_1.pdf">The Lemming Simulation Problem</a>, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6. [Scanned photocopy of pages 5, 6 only, with annotations by R. K. Guy and N. J. A. Sloane]
%H A295559 N. J. A. Sloane, <a href="/A161644/a161644_1.png">Illustration of first 7 generations of A161644 and A295560 (edge-to-edge version)</a>
%H A295559 N. J. A. Sloane, <a href="/A161644/a161644_2.png">Illustration of first 11 generations of A161644 and A295560 (vertex-to-vertex version)</a> [Include the 6 cells marked x to get A161644(11), exclude them to get A295560(11).]
%H A295559 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>
%F A295559 From _Lars Blomberg_, Dec 20 2017: (Start)
%F A295559 Empirically (correct to 3*10^6 terms):
%F A295559 Convert n+1 to binary and view it as 1a1b or 1a1b1,
%F A295559 where a is zero or more digits, let "ones" be the number of 1's in a,
%F A295559 and b is zero or more 0's, let "zeros" be the number of 0's.
%F A295559 Let "len" be the total number of binary digits.
%F A295559 Then r=A295559(n) is determined by ones, zeros, len, and the parity of n+1, as follows:
%F A295559 if (n==0,1,2) r=0,1,3
%F A295559 else if (n+1 is odd)
%F A295559     if (len==zeros+2) r=BVal(1, zeros-1) else if (zeros==0) r=BVal(ones+1, ones+1) else r=BVal(ones+2, ones+zeros)
%F A295559 else
%F A295559     if (len==zeros+1) r=AVal(zeros-2) else r=AVal(ones+zeros-1)
%F A295559 and
%F A295559 AVal(k)=6*(2^(k+1)-1)
%F A295559 BVal(k, kk)=3*2^k + sum(j=0,kk-1, 6 * 2^j) (End)
%o A295559 (PARI) \\ Empirically discovered algorithm.
%o A295559 AVal(k)=6*(2^(k+1)-1)
%o A295559 BVal(k, kk)={ local v; v = 3 * 2^k; for (j=0,kk-1,v += 6 * 2^j);v}
%o A295559 A295559(n)={ local (len,zeros,ones,r);
%o A295559 if(n==0, return(0));
%o A295559 if(n==1, return(1));
%o A295559 if(n==2, return(3));
%o A295559 n++; len=length(binary(n));
%o A295559 zeros=ones=0; i=bittest(n,0);  \\ Skip trailing 1
%o A295559 while(bittest(n,i)==0,zeros++;i++);
%o A295559 for(j=i+1,len-2,ones+=bittest(n,j));
%o A295559 if (bittest(n,0)==1,
%o A295559 if (len==zeros+2, r=BVal(1, zeros-1), if (zeros==0, r=BVal(ones+1, ones+1), r=BVal(ones+2, ones+zeros))),
%o A295559 if (len==zeros+1, r=AVal(zeros-2), r=AVal(ones+zeros-1)));
%o A295559 r;}
%o A295559 vector(200,i,A295559(i-1))
%o A295559 \\ _Lars Blomberg_, Dec 20 2017
%Y A295559 Cf. A161644, A161645, A295560.
%K A295559 nonn
%O A295559 0,3
%A A295559 _N. J. A. Sloane_, Nov 27 2017
%E A295559 Terms a(18) and beyond from _Lars Blomberg_, Dec 20 2017