A295573 Array read by upwards antidiagonals: T(n,k) = nk + floor(phi n) ceiling(phi k) where phi = (1 + sqrt(5))/2.
3, 8, 6, 11, 16, 8, 16, 22, 21, 11, 21, 32, 29, 29, 14, 24, 42, 42, 40, 37, 16, 29, 48, 55, 58, 51, 42, 19, 32, 58, 63, 76, 74, 58, 50, 21, 37, 64, 76, 87, 97, 84, 69, 55, 24, 42, 74, 84, 105, 111, 110, 100, 76, 63, 27, 45, 84, 97, 116, 134, 126, 131, 110, 87, 71, 29, 50, 90, 110, 134, 148, 152, 150, 144, 126, 98, 76, 32
Offset: 1
Examples
The array begins: 3, 6, 8, 11, 14, 16, 19, 21, 24, 27, 29, 32, ... 8, 16, 21, 29, 37, 42, 50, 55, 63, 71, 76, 84, ... 11, 22, 29, 40, 51, 58, 69, 76, 87, 98, 105, 116, ... 16, 32, 42, 58, 74, 84, 100, 110, 126, 142, 152, 168, ... 21, 42, 55, 76, 97, 110, 131, 144, 165, 186, 199, 220, ... 24, 48, 63, 87, 111, 126, 150, 165, 189, 213, 228, 252, ... 29, 58, 76, 105, 134, 152, 181, 199, 228, 257, 275, 304, ... 32, 64, 84, 116, 148, 168, 200, 220, 252, 284, 304, 336, ... ...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (first 150 antidiagonals, flattened).
- P. Arnoux, Some remarks about Fibonacci multiplication, Appl. Math. Lett. 2 (No. 4, 1989), 319-320.
- P. Arnoux, Some remarks about Fibonacci multiplication, Appl. Math. Lett. 2 (No. 4, 1989), 319-320. [Annotated scanned copy]
Programs
-
Maple
T := proc(n, k) local phi; phi := (1+sqrt(5))/2 ; n*k+floor(n*phi)*ceil(phi*k) ; end proc: for n from 1 to 12 do lprint([seq(T(n-i+1,i),i=1..n)]); od: # by antidiagonals for n from 1 to 12 do lprint([seq(T(n,i),i=1..12)]); od: # by rows
-
Mathematica
A295573[n_, k_] := n*k + Floor[n * GoldenRatio] * Ceiling[k * GoldenRatio]; Table[A295573[n-k+1,k], {n, 15}, {k, n}] (* Paolo Xausa, Mar 20 2024 *)
Comments