A295584 Odd numbers that are not a product of Mersenne numbers (A000225).
5, 11, 13, 17, 19, 23, 25, 29, 33, 35, 37, 39, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 129, 131, 133, 137, 139, 141, 143, 145, 149, 151, 153
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- S. Chebolu and K. Lockridge, How Many Units Can a Commutative Ring Have?, Amer. Math. Monthly, 124 (2017), 960-965; arXiv, arXiv:1701.02341 [math.AC], 2017.
Programs
-
Maple
N:= 1000: # to get all terms <= N P:= {1}: for k from 2 do m:= 2^k-1; if m > N then break fi; P:= map(p -> seq(p*m^j, j=0..floor(log[m](N/p))), P); od: sort(convert({seq(i,i=1..N,2)} minus P, list)); # Robert Israel, Dec 15 2017
-
Mathematica
nn == 1000; P = {1}; For[k = 2, True, k++, m = 2^k - 1; If[m > nn, Break[] ]; P = (Function[p, Table[p m^j, {j, 0, Log[m, nn/p]}]] /@ P) // Flatten]; Range[1, nn, 2] ~Complement~ P (* Jean-François Alcover, Sep 18 2018, after Robert Israel *)
Comments