This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295588 #18 Feb 08 2021 21:55:23 %S A295588 30,1770,3810,4170,4470,4890,5910,5970,6810,8070,9210,10590,11370, %T A295588 11670,12030,12990,13470,13890,14370,14970,15630,16890,17070,17610, %U A295588 18510,18570,19290,19410,20190,20310,21270,22710,24810,25710,26310,27570,27870,29010,29490,29730 %N A295588 Numbers k such that Bernoulli number B_{k} has denominator 14322. %C A295588 14322 = 2*3*7*11*31. %C A295588 All terms are multiples of a(1) = 30. %C A295588 For these numbers numerator(B_{k}) mod denominator(B_{k}) = 12899. %H A295588 Seiichi Manyama, <a href="/A295588/b295588.txt">Table of n, a(n) for n = 1..1000</a> %e A295588 Bernoulli B_{30} is 8615841276005/14322, hence 30 is in the sequence. %p A295588 with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do %p A295588 if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,14322); %p A295588 # Alternative: # according to _Robert Israel_ code in A282773 %p A295588 with(numtheory): filter:= n -> %p A295588 select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 7, 11, 31}: %p A295588 select(filter, [seq(i, i=1..10^5)]); %Y A295588 Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272138, A272139, A272140, A272183, A272184, A272185, A272186, A272369. %K A295588 nonn,easy %O A295588 1,1 %A A295588 _Paolo P. Lava_, Nov 24 2017