This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295589 #12 Aug 05 2022 18:44:23 %S A295589 100,1700,7100,16700,22300,25700,28300,31300,31700,33100,35300,37900, %T A295589 38300,38900,39700,44900,45700,47900,52100,56900,58700,60700,66100, %U A295589 75100,75700,78700,79700,83900,85700,85900,88100,90700,96700,99100 %N A295589 Numbers k such that Bernoulli number B_{k} has denominator 33330. %C A295589 33330= 2*3*5*11*101. %C A295589 All terms are multiples of a(1) = 100. %C A295589 For these numbers numerator(B_{k}) mod denominator(B_{k}) = 28859. %H A295589 Seiichi Manyama, <a href="/A295589/b295589.txt">Table of n, a(n) for n = 1..1000</a> %e A295589 Bernoulli B_{100} is %e A295589 -945980378191221252952274330694937218727028415330669361333856962043113954151972 47711/33330, hence 100 is in the sequence. %p A295589 with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do %p A295589 if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 33330); %p A295589 # Alternative: # according to Robert Israel code in A282773 %p A295589 with(numtheory): filter:= n -> %p A295589 select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 11, 101}: %p A295589 select(filter, [seq(i, i=1..10^5)]); %t A295589 Select[Range[100,100000,100],Denominator[BernoulliB[#]]==33330&] (* _Harvey P. Dale_, Aug 05 2022 *) %Y A295589 Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272138, A272139, A272140, A272183, A272184, A272185, A272186, A272369. %K A295589 nonn,easy %O A295589 1,1 %A A295589 _Paolo P. Lava_, Nov 24 2017