This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295590 #19 Feb 11 2021 01:17:57 %S A295590 48,10128,16944,21072,25008,28176,31056,33648,35184,39696,42288,52656, %T A295590 55824,59952,60432,62448,71664,73104,77808,78096,82704,83568,84432, %U A295590 91824,93648,98544,100176,100272,102288,107664,108912,110256,110832,112368,114096,117168,120144 %N A295590 Numbers k such that Bernoulli number B_{k} has denominator 46410. %C A295590 46410 = 2*3*5*7*13*17. %C A295590 All terms are multiples of a(1) = 48. %C A295590 For these numbers numerator(B_{k}) mod denominator(B_{k}) = 31933. %H A295590 Seiichi Manyama, <a href="/A295590/b295590.txt">Table of n, a(n) for n = 1..1000</a> %e A295590 46410 = 2*3*5*7*13*17. %e A295590 Bernoulli B_{48} is -5609403368997817686249127547/46410, hence 48 is in the sequence. %p A295590 with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do %p A295590 if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,64722); %p A295590 # Alternative: # according to _Robert Israel_ code in A282773 %p A295590 with(numtheory): filter:= n -> %p A295590 select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 13, 17}: %p A295590 select(filter, [seq(i, i=1..10^5)]); %t A295590 Select[48*Range[2600],Denominator[BernoulliB[#]]==46410&] (* _Harvey P. Dale_, May 17 2020 *) %Y A295590 Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272138, A272139, A272140, A272183, A272184, A272185, A272186, A272369. %K A295590 nonn,easy %O A295590 1,1 %A A295590 _Paolo P. Lava_, Nov 24 2017