This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295591 #14 Jan 07 2018 21:32:51 %S A295591 88,968,5192,5368,13816,15928,19624,19976,22616,23144,23848,24904, %T A295591 27368,27544,27896,29656,31064,33704,34936,38632,40216,40568,40744, %U A295591 45848,46024,48136,49544,50248,51656,53416,56584,56936,57112,59048,60808,61688,67672,68024,71368 %N A295591 Numbers k such that Bernoulli number B_{k} has denominator 61410. %C A295591 61410 = 2*3*5*23*89. %C A295591 All terms are multiples of a(1) = 88. %C A295591 For these numbers numerator(B_{k}) mod denominator(B_{k}) = 56003. %H A295591 Seiichi Manyama, <a href="/A295591/b295591.txt">Table of n, a(n) for n = 1..1000</a> %e A295591 Bernoulli B_{88} is -1311426488674017507995511424019311843345750275572028644296919890574047/61410 hence 88 is in the sequence. %p A295591 with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do %p A295591 if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 61410); %p A295591 # Alternative: # according to Robert Israel code in A282773 %p A295591 with(numtheory): filter:= n -> %p A295591 select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 23, 89}: %p A295591 select(filter, [seq(i, i=1..10^5)]); %o A295591 (PARI) isok(n) = denominator(bernfrac(n)) == 61410; \\ _Michel Marcus_, Jan 07 2018 %Y A295591 Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272138, A272139, A272140, A272183, A272184, A272185, A272186, A272369. %K A295591 nonn,easy %O A295591 1,1 %A A295591 _Paolo P. Lava_, Nov 24 2017