This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295592 #11 Dec 02 2017 07:53:09 %S A295592 66,3894,4686,5214,6402,8382,9174,9834,10362,10758,11022,13134,14718, %T A295592 17754,20262,20922,22242,23034,23298,25014,25278,25674,26466,27786, %U A295592 28974,29634,30162,31614,34386,36102,37554,37686,38742,39534,40722,42438,44418,45606,46266 %N A295592 Numbers k such that Bernoulli number B_{k} has denominator 64722. %C A295592 64722 = 2*3*7*23*67. %C A295592 All terms are multiples of a(1) = 66. %C A295592 For these numbers numerator(B_{k}) mod denominator(B_{k}) = 62483. %H A295592 Seiichi Manyama, <a href="/A295592/b295592.txt">Table of n, a(n) for n = 1..1000</a> %e A295592 Bernoulli B_{66} is %e A295592 1472600022126335654051619428551932342241899101/64722, hence 66 is in the sequence. %p A295592 with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do %p A295592 if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,64722); %p A295592 # Alternative: # according to Robert Israel code in A282773 %p A295592 with(numtheory): filter:= n -> %p A295592 select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 7, 23, 67}: %p A295592 select(filter, [seq(i, i=1..10^5)]); %Y A295592 Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272138, A272139, A272140, A272183, A272184, A272185, A272186, A272369. %K A295592 nonn,easy %O A295592 1,1 %A A295592 _Paolo P. Lava_, Nov 24 2017