This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295593 #10 Dec 09 2017 20:26:05 %S A295593 80,160,320,13360,17840,18160,20560,25360,26720,28240,30640,35680, %T A295593 36320,36560,41120,43280,45520,46960,50720,52880,56480,60080,61280, %U A295593 69040,70960,71360,72560,72640,79280,84080,87760,91040,92240,93040,93680,93920,94480,97040,97360 %N A295593 Numbers k such that Bernoulli number B_{k} has denominator 230010. %C A295593 230010 = 2*3*5*11*17*41. %C A295593 All terms are multiples of a(1) = 80. %C A295593 For these numbers numerator(B_{k}) mod denominator(B_{k}) = 182293. %H A295593 Seiichi Manyama, <a href="/A295593/b295593.txt">Table of n, a(n) for n = 1..1000</a> %e A295593 Bernoulli B_{80} is %e A295593 -4603784299479457646935574969019046849794257872751288919656867/230010, hence 80 is in the sequence. %p A295593 with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do %p A295593 if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,230010); %p A295593 # Alternative: # according to Robert Israel code in A282773 %p A295593 with(numtheory): filter:= n -> %p A295593 select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 11, 17, 41}: %p A295593 select(filter, [seq(i, i=1..10^5)]); %Y A295593 Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272138, A272139, A272140, A272183, A272184, A272185, A272186, A272369. %K A295593 nonn,easy %O A295593 1,1 %A A295593 _Paolo P. Lava_, Nov 24 2017