This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295594 #10 Jan 06 2018 10:59:49 %S A295594 90,14670,24210,35010,40410,41670,44910,46890,55530,57870,60570,60930, %T A295594 82710,83610,87030,89730,98370,101070,104670,106830,109530,111330, %U A295594 113310,114930,117090,117270,117630,123570,128610,138870,150030,152730,160470,175590,178110,179730 %N A295594 Numbers k such that Bernoulli number B_{k} has denominator 272118. %C A295594 272118 = 2*3*7*11*19*31. %C A295594 All terms are multiples of a(1) = 90. %C A295594 For these numbers numerator(B_{k}) mod denominator(B_{k}) = 230759. %H A295594 Seiichi Manyama, <a href="/A295594/b295594.txt">Table of n, a(n) for n = 1..1000</a> %F A295594 272118 = 2*3*7*11*19*31. %F A295594 Bernoulli B_{90} is %F A295594 1179057279021082799884123351249215083775254949669647116231545215727922535/ 272118 hence 90 is in the sequence. %p A295594 with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do %p A295594 if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 272118); %p A295594 # Alternative: # according to Robert Israel code in A282773 %p A295594 with(numtheory): filter:= n -> %p A295594 select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 7, 11, 19, 31}: %p A295594 select(filter, [seq(i, i=1..10^5)]); %Y A295594 Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272138, A272139, A272140, A272183, A272184, A272185, A272186, A272369. %K A295594 nonn,easy %O A295594 1,1 %A A295594 _Paolo P. Lava_, Nov 24 2017