This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295595 #18 Feb 16 2018 10:21:21 %S A295595 36,3924,6012,7596,8172,11412,12564,12708,14004,15156,15804,16164, %T A295595 19692,20556,21564,22068,22212,26388,27684,30924,34812,35172,35388, %U A295595 39492,41508,41868,42732,43812,45324,45972,46836,46908,47052,49212,52092,53388,53604,53748,58932 %N A295595 Numbers k such that Bernoulli number B_{k} has denominator 1919190. %C A295595 1919190 = 2*3*5*7*13*19*37. %C A295595 All terms are multiples of a(1) = 36. %C A295595 For these numbers numerator(B_{k}) mod denominator(B_{k}) = 1280537. %H A295595 Seiichi Manyama, <a href="/A295595/b295595.txt">Table of n, a(n) for n = 1..1000</a> %e A295595 Bernoulli B_{36} is %e A295595 -26315271553053477373/1919190, hence 36 is in the sequence. %p A295595 with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do %p A295595 if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,1919190); %p A295595 # Alternative according to _Robert Israel_'s code in A282773: %p A295595 with(numtheory): filter:= n -> %p A295595 select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 13, 19, 37}: %p A295595 select(filter, [seq(i, i=1..10^5)]); %Y A295595 Cf. A282773. %K A295595 nonn,easy %O A295595 1,1 %A A295595 _Paolo P. Lava_, Nov 24 2017