cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295596 Numbers k such that Bernoulli number B_{k} has denominator 3404310.

This page as a plain text file.
%I A295596 #10 Jan 08 2018 09:42:42
%S A295596 84,168,16548,26628,29316,38388,43764,47964,53256,61572,69132,71988,
%T A295596 72156,73668,87528,96852,103908,109284,121548,123144,124572,137508,
%U A295596 139188,142548,144312,144564,146244,147336,156828,163716,167748,172452,174972,185388,188076,190428
%N A295596 Numbers k such that Bernoulli number B_{k} has denominator 3404310.
%C A295596 3404310 = 2*3*5*7*13*29*43.
%C A295596 All terms are multiples of a(1) = 84.
%C A295596 For these numbers numerator(B_{k}) mod denominator(B_{k}) = 2346073.
%H A295596 Seiichi Manyama, <a href="/A295596/b295596.txt">Table of n, a(n) for n = 1..1000</a>
%e A295596 Bernoulli B_{84} is
%e A295596 -2024576195935290360231131160111731009989917391198090877281083932477/3404310 hence 84 is in the sequence.
%p A295596 with(numtheory): P:=proc(q, h) local n;  for n from 2 by 2 to q do
%p A295596 if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 3404310);
%p A295596 # Alternative: # according to Robert Israel code in A282773
%p A295596 with(numtheory): filter:= n ->
%p A295596 select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 13, 29, 43}:
%p A295596 select(filter, [seq(i, i=1..10^5)]);
%Y A295596 Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272138, A272139, A272140, A272183, A272184, A272185, A272186, A272369.
%K A295596 nonn,easy
%O A295596 1,1
%A A295596 _Paolo P. Lava_, Nov 24 2017