cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295597 Numbers k such that Bernoulli number B_{k} has denominator 4501770.

Original entry on oeis.org

96, 20256, 42144, 56352, 62112, 70368, 84576, 105312, 119904, 146208, 155616, 156192, 165408, 167136, 168864, 183648, 187296, 200352, 200544, 204576, 217824, 221664, 228192, 234336, 240288, 252768, 255072, 255264, 258144, 262176, 263904, 266592, 274272, 304224, 306336
Offset: 1

Views

Author

Paolo P. Lava, Nov 24 2017

Keywords

Comments

4501770 = 2*3*5*7*13*17*97.
All terms are multiples of a(1) = 96.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 3051091.

Examples

			Bernoulli B_{96} is
-211600449597266513097597728109824233673043954389060234150638733420050668349987 259/4501770 hence 96 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 4501770);
    # Alternative: # according to Robert Israel code in A282773
    with(numtheory): filter:= n ->
    select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 13, 17, 97}:
    select(filter, [seq(i, i=1..10^5)]);
  • Mathematica
    96*Flatten[Position[BernoulliB[Range[96,31*10^4,96]],?(Denominator[ #] == 4501770&)]] (* The program takes a long time to run *) (* _Harvey P. Dale, May 06 2018 *)