cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295598 Numbers k such that Bernoulli number B_{k} has denominator 56786730.

This page as a plain text file.
%I A295598 #10 Feb 04 2018 11:28:21
%S A295598 60,13620,21180,23340,26940,31260,40620,45420,49620,52620,58020,59460,
%T A295598 69780,73020,74220,78180,79140,83940,89580,97260,97620,100020,104460,
%U A295598 111660,116940,117060,119820,123180,125340,127860,137820,140460,142260,142620,157980,162420
%N A295598 Numbers k such that Bernoulli number B_{k} has denominator 56786730.
%C A295598 56786730 = 2*3*5*7*11*13*31*61.
%C A295598 All terms are multiples of a(1) = 60.
%C A295598 For these numbers numerator(B_{k}) mod denominator(B_{k}) = 34488049.
%H A295598 Seiichi Manyama, <a href="/A295598/b295598.txt">Table of n, a(n) for n = 1..1000</a>
%e A295598 Bernoulli B_{60} is
%e A295598 -1215233140483755572040304994079820246041491/56786730, hence 60 is in the sequence.
%p A295598 with(numtheory): P:=proc(q, h) local n;  for n from 2 by 2 to q do
%p A295598 if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 56786730);
%p A295598 # Alternative: # according to Robert Israel code in A282773
%p A295598 with(numtheory): filter:= n ->
%p A295598 select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 11, 13, 31, 61}:
%p A295598 select(filter, [seq(i, i=1..10^5)]);
%Y A295598 Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272138, A272139, A272140, A272183, A272184, A272185, A272186, A272369.
%K A295598 nonn,easy
%O A295598 1,1
%A A295598 _Paolo P. Lava_, Nov 24 2017