A295599 Numbers k such that Bernoulli number B_{k} has denominator 140100870.
72, 12024, 22824, 25416, 31608, 39384, 52776, 61848, 78984, 90648, 93672, 93816, 107496, 117864, 123912, 124056, 125784, 143784, 147816, 150408, 156888, 161064, 161208, 163368, 165384, 166248, 170712, 178056, 180216, 188424, 191304, 193608, 197928, 199944, 204696
Offset: 1
Examples
140100870 = 2*3*5*7*13*19*37*73. Bernoulli B_{72} is -5827954961669944110438277244641067365282488301844260429/140100870, hence 72 is in the sequence.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 140100870); # Alternative: # according to Robert Israel code in A282773 with(numtheory): filter:= n -> select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 13, 19, 37, 73}: select(filter, [seq(i, i=1..10^5)]);
Comments