A295335 a(n) = least k >= 0 such that n OR k is prime (where OR denotes the bitwise OR operator).
2, 2, 0, 0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 17, 16, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 5, 4, 1, 0, 1, 0, 5, 4, 9, 8, 1, 0, 9, 8, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 9, 8, 1, 0, 73, 72, 3, 2, 1, 0, 1, 0, 65, 64, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 43
Offset: 0
Examples
For n = 42, 42 OR 0 = 42 is not prime, 42 OR 1 = 43 is prime, hence a(42) = 1.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..8191
- Antti Karttunen, Data supplement: n, a(n) computed for n = 0..65537
- Rémy Sigrist, Scatterplot of the first 2^17 terms
- Index entries for sequences related to binary expansion of n
Programs
-
Mathematica
Table[Block[{k = 0}, While[! PrimeQ@ BitOr[k, n], k++]; k], {n, 0, 84}] (* Michael De Vlieger, Nov 26 2017 *)
-
PARI
avoid(n,i) = if (i, if (n%2, 2*avoid(n\2,i), 2*avoid(n\2,i\2)+(i%2)), 0) \\ (i+1)-th number k such that k AND n = 0 a(n) = for (i=0, oo, my (k=avoid(n,i)); if (isprime(n+k), return (k)))
Formula
For any k > 1, a(2*k+1) = a(2*k)-1.
Comments