This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295634 #9 Jan 15 2018 03:09:33 %S A295634 1,1,1,1,1,1,1,2,3,3,1,2,6,7,4,1,3,11,24,24,12,1,3,17,51,89,74,27,1,4, %T A295634 26,109,265,371,259,82,1,4,36,194,660,1291,1478,891,228,1,5,50,345, %U A295634 1477,3891,6249,6044,3176,733,1,5,65,550,3000,10061,21524,29133,24302,11326,2282 %N A295634 Triangle read by rows: T(n,k) = number of nonequivalent dissections of an n-gon into k polygons by nonintersecting diagonals up to rotation and reflection. %H A295634 Andrew Howroyd, <a href="/A295634/b295634.txt">Table of n, a(n) for n = 3..1277</a> %e A295634 Triangle begins: (n >= 3, k >= 1) %e A295634 1; %e A295634 1, 1; %e A295634 1, 1, 1; %e A295634 1, 2, 3, 3; %e A295634 1, 2, 6, 7, 4; %e A295634 1, 3, 11, 24, 24, 12; %e A295634 1, 3, 17, 51, 89, 74, 27; %e A295634 1, 4, 26, 109, 265, 371, 259, 82; %e A295634 1, 4, 36, 194, 660, 1291, 1478, 891, 228; %e A295634 ... %o A295634 (PARI) \\ See A295419 for DissectionsModDihedral() %o A295634 T=DissectionsModDihedral(apply(i->y, [1..12])); %o A295634 for(n=3, #T, for(k=1, n-2, print1(polcoeff(T[n], k), ", ")); print) %Y A295634 Row sums are A001004. %Y A295634 Column k=3 is A003453. %Y A295634 Diagonals include A000207, A003449, A003450. %Y A295634 Cf. A295260, A295419, A295633. %K A295634 nonn,tabl %O A295634 3,8 %A A295634 _Andrew Howroyd_, Nov 24 2017