cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295636 Write 2 - Zeta(s) in the form Product_{n > 1}(1 - a(n)/n^s).

This page as a plain text file.
%I A295636 #4 Dec 19 2017 02:38:07
%S A295636 1,1,1,1,2,1,2,1,2,1,4,1,2,2,3,1,4,1,4,2,2,1,8,1,2,2,4,1,6,1,6,2,2,2,
%T A295636 8,1,2,2,8,1,6,1,4,4,2,1,16,1,4,2,4,1,8,2,8,2,2,1,16,1,2,4,8,2,6,1,4,
%U A295636 2,6,1,24,1,2,4,4,2,6,1,16,3,2,1,16,2,2,2
%N A295636 Write 2 - Zeta(s) in the form Product_{n > 1}(1 - a(n)/n^s).
%F A295636 a(n) = Sum_t (-1)^(v(t)-1) where the sum is over all strict tree-factorizations of n (see A295279 for definition) and v(t) is the number of nodes (branchings and leaves) in t.
%t A295636 nn=100;
%t A295636 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A295636 -Solve[Table[-1==Sum[Times@@a/@f,{f,Select[facs[n],UnsameQ@@#&]}],{n,2,nn}],Table[a[n],{n,2,nn}]][[1,All,2]]
%Y A295636 Cf. A001055, A045778, A050376, A220418, A220420, A273866, A273873, A289501, A290261, A290262, A290971, A290973, A295279, A295632, A295635.
%K A295636 nonn
%O A295636 2,5
%A A295636 _Gus Wiseman_, Nov 24 2017