cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295653 Square array T(n, k), n >= 0, k >= 0, read by antidiagonals upwards: T(n, k) = the (k+1)-th nonnegative number m such that n AND m = 0 (where AND denotes the bitwise AND operator).

This page as a plain text file.
%I A295653 #8 Nov 27 2017 12:46:09
%S A295653 0,0,1,0,2,2,0,1,4,3,0,4,4,6,4,0,1,8,5,8,5,0,2,2,12,8,10,6,0,1,8,3,16,
%T A295653 9,12,7,0,8,8,10,8,20,12,14,8,0,1,16,9,16,9,24,13,16,9,0,2,2,24,16,18,
%U A295653 10,28,16,18,10,0,1,4,3,32,17,24,11,32,17,20
%N A295653 Square array T(n, k), n >= 0, k >= 0, read by antidiagonals upwards: T(n, k) = the (k+1)-th nonnegative number m such that n AND m = 0 (where AND denotes the bitwise AND operator).
%C A295653 This sequence has similarities with A126572: here we check for common bits in binary representations, there for common primes in prime factorizations.
%C A295653 For any n >= 0 and k >= 0:
%C A295653 - T(0, k) = k,
%C A295653 - T(1, k) = 2*k,
%C A295653 - T(2, k) = A042948(k),
%C A295653 - T(3, k) = 4*k,
%C A295653 - T(4, k) = A047476(k),
%C A295653 - T(5, k) = A047467(k),
%C A295653 - T(2^n - 1, k) = 2^n * k,
%C A295653 - T(n, 0) = 0,
%C A295653 - T(n, 1) = A006519(n+1),
%C A295653 - T(n, k + 2^A080791(n)) = T(n, k) + 2^A029837(n+1) (i.e. each row is linear),
%C A295653 - A000120(T(n, k)) = A000120(k).
%F A295653 For any n >= 0 and k >= 0:
%F A295653 - T(0, k) = k,
%F A295653 - T(2*n + 1, k) = 2*T(n, k),
%F A295653 - T(2*n, 2*k) = 2*T(n, k),
%F A295653 - T(2*n, 2*k + 1) = 2*T(n, k) + 1.
%F A295653 For any n >= 0, T(n, k) ~ 2^A000120(n) * k as k tends to infinity.
%e A295653 Square array begins:
%e A295653 n\k  0   1   2   3   4   5   6   7   8   9  ...
%e A295653 0:   0   1   2   3   4   5   6   7   8   9  ...
%e A295653 1:   0   2   4   6   8  10  12  14  16  18  ...
%e A295653 2:   0   1   4   5   8   9  12  13  16  17  ...
%e A295653 3:   0   4   8  12  16  20  24  28  32  36  ...
%e A295653 4:   0   1   2   3   8   9  10  11  16  17  ...
%e A295653 5:   0   2   8  10  16  18  24  26  32  34  ...
%e A295653 6:   0   1   8   9  16  17  24  25  32  33  ...
%e A295653 7:   0   8  16  24  32  40  48  56  64  72  ...
%e A295653 8:   0   1   2   3   4   5   6   7  16  17  ...
%e A295653 9:   0   2   4   6  16  18  20  22  32  34  ...
%o A295653 (PARI) T(n,k) = if (n==0, k, n%2, 2*T(n\2,k), 2*T(n\2,k\2) + (k%2))
%Y A295653 Cf. A000120, A006519, A029837, A042948, A047467, A047476, A080791, A126572.
%K A295653 nonn,tabl,base
%O A295653 0,5
%A A295653 _Rémy Sigrist_, Nov 25 2017