cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295662 Number of odd exponents larger than one in the canonical prime factorization of n.

This page as a plain text file.
%I A295662 #22 Nov 24 2024 00:07:10
%S A295662 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,
%T A295662 0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
%U A295662 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1
%N A295662 Number of odd exponents larger than one in the canonical prime factorization of n.
%H A295662 Antti Karttunen, <a href="/A295662/b295662.txt">Table of n, a(n) for n = 1..65537</a>
%H A295662 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F A295662 Additive with a(p) = 0, a(p^e) = A000035(e) if e > 1.
%F A295662 a(1) = 0; and for n > 1, if A067029(n) = 1, a(n) = a(A028234(n)), otherwise A000035(A067029(n)) + a(A028234(n)).
%F A295662 a(n) = A162642(n) - A056169(n).
%F A295662 a(n) <= A295659(n).
%F A295662 a(n) = 0 iff A295663(n) = 0, and when A295663(n) > 0, a(n) <= A295663(n).
%F A295662 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p^2*(p+1)) = 0.122017493776862257491... . - _Amiram Eldar_, Sep 28 2023
%e A295662 For n = 24 = 2^3 * 3^1 there are two odd exponents, but only the other is larger than 1, thus a(24) = 1.
%e A295662 For n = 216 = 2^3 * 3^3 there are two odd exponents larger than 1, thus a(216) = 2.
%t A295662 Array[Count[FactorInteger[#][[All, -1]], _?(And[OddQ@ #, # > 1] &)] &, 105] (* _Michael De Vlieger_, Nov 28 2017 *)
%o A295662 (Scheme, with memoization-macro definec)
%o A295662 (definec (A295662 n) (if (= 1 n) 0 (+ (if (= 1 (A067029 n)) 0 (A000035 (A067029 n))) (A295662 (A028234 n)))))
%o A295662 (PARI) a(n) = vecsum(apply(x -> x%2 - (x==1), factor(n)[, 2])); \\ _Amiram Eldar_, Sep 28 2023
%Y A295662 Cf. A056169, A162642, A295659, A295663, A295664.
%Y A295662 Cf. A295661 (positions of nonzero terms).
%K A295662 nonn,easy
%O A295662 1,216
%A A295662 _Antti Karttunen_, Nov 28 2017