This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295670 #27 Nov 06 2020 10:38:34 %S A295670 6,9,12,14,15,17,18,20,22,23,25,26,27,28,31,32,34,35,37,40,43 %N A295670 Numbers that have exactly one representation as a sum of six positive squares. %C A295670 It appears that this sequence is finite and complete. See the von Eitzen link for a proof for the 5 positive squares case. %D A295670 E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1. %H A295670 H. von Eitzen, in reply to user James47, <a href="http://math.stackexchange.com/questions/811824/what-is-the-largest-integer-with-only-one-representation-as-a-sum-of-five-nonzer">What is the largest integer with only one representation as a sum of five nonzero squares?</a> on stackexchange.com, May 2014 %H A295670 D. H. Lehmer, <a href="http://www.jstor.org/stable/2305380">On the Partition of Numbers into Squares</a>, The American Mathematical Monthly, Vol. 55, No. 8, October 1948, pp. 476-481. %F A295670 A243148(a(n),6) = 1. - _Alois P. Heinz_, Feb 25 2019 %t A295670 m = 6; %t A295670 r[n_] := Reduce[xx = Array[x, m]; 0 <= x[1] && LessEqual @@ xx && AllTrue[xx, Positive] && n == Total[xx^2], xx, Integers]; %t A295670 For[n = 0, n < 50, n++, rn = r[n]; If[rn[[0]] === And, Print[n, " ", rn]]] (* _Jean-François Alcover_, Feb 25 2019 *) %t A295670 b[n_, i_, k_, t_] := b[n, i, k, t] = If[n == 0, If[t == 0, 1, 0], If[i<1 || t<1, 0, b[n, i - 1, k, t] + If[i^2 > n, 0, b[n - i^2, i, k, t - 1]]]]; %t A295670 T[n_, k_] := b[n, Sqrt[n] // Floor, k, k]; %t A295670 Position[Table[T[n, 6], {n, 0, 100}], 1] - 1 // Flatten (* _Jean-François Alcover_, Nov 06 2020, after _Alois P. Heinz_ in A243148 *) %Y A295670 Cf. A000177, A025430, A243148, A294524. %K A295670 nonn,more %O A295670 1,1 %A A295670 _Robert Price_, Nov 25 2017