This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295704 #17 Mar 17 2020 11:56:47 %S A295704 1,1,2,4,10,26,66,169,437,1130,2926,7597,19749,51381,133812,348755, %T A295704 909464,2372862,6193720 %N A295704 Number of equivalence classes of 132-avoiding permutations of [n], where two permutations are equivalent if they have the same set of pure descents. %C A295704 As defined in Baril et al., a pure descent of a permutation p is a pair of the form (p_i, p_(i+1)) such that p_i > p_(i+1) and there is no j < i such that p_i > p_j > p_(i+1). %H A295704 Jean-Luc Baril, Sergey Kirgizov, Armen Petrossian, <a href="http://jl.baril.u-bourgogne.fr/forest.pdf">Forests and pattern-avoiding permutations modulo pure descents</a>, Permutation Patterns 2017, Reykjavik University, Iceland, June 26-30, 2017. See Section 5. %o A295704 (Sage) %o A295704 def DD(p) : %o A295704 pure_descents = [] %o A295704 occur = 0 %o A295704 for i in range(len(p)-1) : %o A295704 hi = p[i]; lo = p[i+1] %o A295704 mask = ((1 << (hi - lo)) - 1) << lo %o A295704 if hi > lo and not (occur & mask) : %o A295704 pure_descents.append((hi, lo)) %o A295704 occur |= 1 << hi %o A295704 pure_descents.sort() %o A295704 return pure_descents %o A295704 def a(n): return len({tuple(DD(p)) for p in Permutations(n, avoiding=[1,3,2])}) %Y A295704 Cf. A005773 (analogous sequence for 123-avoiding permutations), A152225 (conjecturally analogous sequence for 213-avoiding permutations). %K A295704 nonn,more %O A295704 0,3 %A A295704 _Eric M. Schmidt_, Nov 25 2017