cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295717 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = 3, a(2) = 5, a(3) = 7.

This page as a plain text file.
%I A295717 #7 Aug 27 2021 21:21:28
%S A295717 1,3,5,7,14,19,37,52,97,141,254,379,665,1012,1741,2689,4558,7119,
%T A295717 11933,18796,31241,49525,81790,130291,214129,342372,560597,898873,
%U A295717 1467662,2358343,3842389,6184348,10059505,16211085,26336126,42481675,68948873,111299476
%N A295717 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = 3, a(2) = 5, a(3) = 7.
%C A295717 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
%H A295717 Clark Kimberling, <a href="/A295717/b295717.txt">Table of n, a(n) for n = 0..2000</a>
%H A295717 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, -2, -2)
%F A295717 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 3, a(2) = 5, a(3) = 7.
%F A295717 G.f.: (1 + 2 x - x^2 - 5 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4).
%t A295717 LinearRecurrence[{1, 3, -2, -2}, {1, 3, 5, 7}, 100]
%Y A295717 Cf. A001622, A000045, A005672.
%K A295717 nonn,easy
%O A295717 0,2
%A A295717 _Clark Kimberling_, Nov 29 2017