This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295717 #7 Aug 27 2021 21:21:28 %S A295717 1,3,5,7,14,19,37,52,97,141,254,379,665,1012,1741,2689,4558,7119, %T A295717 11933,18796,31241,49525,81790,130291,214129,342372,560597,898873, %U A295717 1467662,2358343,3842389,6184348,10059505,16211085,26336126,42481675,68948873,111299476 %N A295717 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = 3, a(2) = 5, a(3) = 7. %C A295717 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045). %H A295717 Clark Kimberling, <a href="/A295717/b295717.txt">Table of n, a(n) for n = 0..2000</a> %H A295717 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, -2, -2) %F A295717 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 3, a(2) = 5, a(3) = 7. %F A295717 G.f.: (1 + 2 x - x^2 - 5 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4). %t A295717 LinearRecurrence[{1, 3, -2, -2}, {1, 3, 5, 7}, 100] %Y A295717 Cf. A001622, A000045, A005672. %K A295717 nonn,easy %O A295717 0,2 %A A295717 _Clark Kimberling_, Nov 29 2017