This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295718 #11 Aug 27 2021 21:21:17 %S A295718 1,3,4,5,9,10,19,21,40,45,85,98,183,217,400,489,889,1122,2011,2621, %T A295718 4632,6229,10861,15042,25903,36849,62752,91409,154161,229186,383347, %U A295718 579765,963112,1477341,2440453,3786722,6227175,9751753,15978928,25206393,41185321 %N A295718 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = 3, a(2) = 4, a(3) = 5. %C A295718 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045). %H A295718 Clark Kimberling, <a href="/A295718/b295718.txt">Table of n, a(n) for n = 0..2000</a> %H A295718 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, -2, -2) %F A295718 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 3, a(2) = 4, a(3) = 5. %F A295718 G.f.: (1 + 2 x - 2 x^2 - 6 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4). %t A295718 LinearRecurrence[{1, 3, -2, -2}, {1, 3, 4, 5}, 100] %Y A295718 Cf. A001622, A000045, A005672. %K A295718 nonn,easy %O A295718 0,2 %A A295718 _Clark Kimberling_, Nov 29 2017