A295719 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = 3, a(2) = 6, a(3) = 10.
1, 3, 6, 10, 20, 32, 60, 96, 172, 276, 480, 772, 1316, 2120, 3564, 5748, 9568, 15444, 25524, 41224, 67772, 109508, 179328, 289860, 473284, 765192, 1246668, 2015956, 3279008, 5303156, 8614932, 13934472, 22614940, 36582180, 59328192, 95975908, 155566244
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (1, 3, -2, -2)
Programs
-
Mathematica
LinearRecurrence[{1, 3, -2, -2}, {1, 3, 6, 10}, 100]
Formula
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 3, a(2) = 6, a(3) = 10.
G.f.: (1 + 2 x - 3 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4).
Comments