cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295723 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 3.

This page as a plain text file.
%I A295723 #6 Aug 27 2021 21:20:08
%S A295723 0,1,2,3,7,10,21,31,60,91,167,258,457,715,1236,1951,3315,5266,8837,
%T A295723 14103,23452,37555,62031,99586,163665,263251,431012,694263,1133467,
%U A295723 1827730,2977581,4805311,7815660,12620971,20502167,33123138,53756377,86879515,140898036
%N A295723 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 3.
%C A295723 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
%H A295723 Clark Kimberling, <a href="/A295723/b295723.txt">Table of n, a(n) for n = 0..2000</a>
%H A295723 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, -2, -2)
%F A295723 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 3.
%F A295723 G.f.: (x + x^2 - 2 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4).
%t A295723 LinearRecurrence[{1, 3, -2, -2}, {0, 1, 2, 3}, 100]
%Y A295723 Cf. A001622, A000045, A005672.
%K A295723 nonn,easy
%O A295723 0,3
%A A295723 _Clark Kimberling_, Nov 29 2017