This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295727 #6 Aug 27 2021 21:19:08 %S A295727 -1,1,1,1,4,3,11,10,29,31,76,91,199,258,521,715,1364,1951,3571,5266, %T A295727 9349,14103,24476,37555,64079,99586,167761,263251,439204,694263, %U A295727 1149851,1827730,3010349,4805311,7881196,12620971,20633239,33123138,54018521,86879515 %N A295727 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = -1, a(1) = 1, a(2) = 1, a(3) = 1. %C A295727 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045). %H A295727 Clark Kimberling, <a href="/A295727/b295727.txt">Table of n, a(n) for n = 0..2000</a> %H A295727 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, -2, -2) %F A295727 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = -1, a(1) = 1, a(2) = 1, a(3) = 1. %F A295727 G.f.: (1 - 3 x)/(-1 + x + x^2) + x/(-1 + 2 x^2). %t A295727 LinearRecurrence[{1, 3, -2, -2}, {-1, 1, 1, 1}, 100] %Y A295727 Cf. A001622, A000045, A005672. %K A295727 easy,sign %O A295727 0,5 %A A295727 _Clark Kimberling_, Nov 29 2017