This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295728 #6 Aug 27 2021 21:18:59 %S A295728 1,-1,1,1,4,7,15,26,49,83,148,247,427,706,1197,1967,3292,5387,8935, %T A295728 14578,24025,39115,64164,104303,170515,276866,451477,732439,1192108, %U A295728 1932739,3141231,5090354,8264353,13387475,21717364,35170375,57018811,92320258,149601213 %N A295728 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = -1, a(2) = 1, a(3) = 1. %C A295728 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045). %H A295728 Clark Kimberling, <a href="/A295728/b295728.txt">Table of n, a(n) for n = 0..2000</a> %H A295728 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, -2, -2) %F A295728 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = -1, a(2) = 1, a(3) = 1. %F A295728 G.f.: (1 - 2 x - x^2 + 5 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4). %t A295728 LinearRecurrence[{1, 3, -2, -2}, {1, -1, 1, 1}, 100] %Y A295728 Cf. A001622, A000045, A005672. %K A295728 easy,sign %O A295728 0,5 %A A295728 _Clark Kimberling_, Nov 29 2017