This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295729 #6 Aug 27 2021 21:02:35 %S A295729 -1,0,1,1,6,7,21,28,65,93,190,283,537,820,1485,2305,4046,6351,10909, %T A295729 17260,29193,46453,77694,124147,205937,330084,544213,874297,1434894, %U A295729 2309191,3776853,6086044,9928433,16014477,26073982,42088459,68424585,110513044 %N A295729 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = -1, a(1) = 0, a(2) = 1, a(3) = 1. %C A295729 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045). %H A295729 Clark Kimberling, <a href="/A295729/b295729.txt">Table of n, a(n) for n = 0..2000</a> %H A295729 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, -2, -2) %F A295729 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = -1, a(1) = 0, a(2) = 1, a(3) = 1. %F A295729 G.f.: (-1 + x + 4 x^2 - 2 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4). %t A295729 LinearRecurrence[{1, 3, -2, -2}, {-1, 0, 1, 1}, 100] %Y A295729 Cf. A001622, A000045, A005672. %K A295729 easy,sign %O A295729 0,5 %A A295729 _Clark Kimberling_, Nov 30 2017