This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295730 #6 Aug 27 2021 21:02:46 %S A295730 -1,0,0,1,3,6,13,23,44,75,135,226,393,651,1108,1823,3059,5010,8325, %T A295730 13591,22428,36531,59983,97538,159569,259155,422820,686071,1117083, %U A295730 1811346,2944813,4772543,7750124,12555435,20371095,32992066,53494233,86617371,140373748 %N A295730 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = -1, a(1) = 0, a(2) = 0, a(3) = 1. %C A295730 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045). %H A295730 Clark Kimberling, <a href="/A295730/b295730.txt">Table of n, a(n) for n = 0..2000</a> %H A295730 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, -2, -2) %F A295730 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = -1, a(1) = 0, a(2) = 0, a(3) = 1. %F A295730 G.f.: (-1 + x + 3 x^2 - x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4). %t A295730 LinearRecurrence[{1, 3, -2, -2}, {-1, 0, 0, 1}, 100] %Y A295730 Cf. A001622, A000045, A005672. %K A295730 easy,sign %O A295730 0,5 %A A295730 _Clark Kimberling_, Nov 30 2017