This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295732 #6 Aug 27 2021 21:03:11 %S A295732 -1,-1,-1,1,2,9,15,36,59,119,194,361,587,1044,1695,2931,4754,8069, %T A295732 13079,21916,35507,58959,95490,157521,255059,418724,677879,1108891, %U A295732 1794962,2928429,4739775,7717356,12489899,20305559,32860994,53363161,86355227,140111604 %N A295732 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = -1, a(1) = -1, a(2) = -1, a(3) = 1. %C A295732 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045). %H A295732 Clark Kimberling, <a href="/A295732/b295732.txt">Table of n, a(n) for n = 0..2000</a> %H A295732 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, -2, -2) %F A295732 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = -1, a(1) = -1, a(2) = -1, a(3) = 1. %F A295732 G.f.: (-1 + 3 x^2 + 3 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4). %t A295732 LinearRecurrence[{1, 3, -2, -2}, {-1, -1, -1, 1}, 100] %Y A295732 Cf. A001622, A000045, A005672. %K A295732 easy,sign %O A295732 0,5 %A A295732 _Clark Kimberling_, Nov 30 2017