cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295733 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 0, a(1) = -1, a(2) = -1, a(3) = 1.

This page as a plain text file.
%I A295733 #6 Aug 27 2021 21:03:19
%S A295733 0,-1,-1,1,0,7,7,26,33,83,116,247,363,706,1069,1967,3036,5387,8423,
%T A295733 14578,23001,39115,62116,104303,166419,276866,443285,732439,1175724,
%U A295733 1932739,3108463,5090354,8198817,13387475,21586292,35170375,56756667,92320258,149076925
%N A295733 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 0, a(1) = -1, a(2) = -1, a(3) = 1.
%C A295733 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
%H A295733 Clark Kimberling, <a href="/A295733/b295733.txt">Table of n, a(n) for n = 0..2000</a>
%H A295733 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, -2, -2)
%F A295733 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 0; a(1) = -1, a(2) = -1, a(3) = 1.
%F A295733 G.f.: (-x + 5 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4).
%t A295733 LinearRecurrence[{1, 3, -2, -2}, {0, -1, -1, 1}, 100]
%Y A295733 Cf. A001622, A000045, A005672.
%K A295733 easy,sign
%O A295733 0,6
%A A295733 _Clark Kimberling_, Nov 30 2017