This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295735 #9 Nov 24 2024 00:05:35 %S A295735 0,-1,0,1,3,8,15,31,54,101,171,304,507,875,1446,2449,4023,6728,11007, %T A295735 18247,29766,49037,79827,130912,212787,347795,564678,920665,1493535, %U A295735 2430584,3940503,6403855,10377126,16846517,27289179,44266768,71687019,116215931 %N A295735 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 0, a(1) = -1, a(2) = 0, a(3) = 1. %C A295735 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045). %H A295735 Clark Kimberling, <a href="/A295735/b295735.txt">Table of n, a(n) for n = 0..2000</a> %H A295735 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-2,-2). %F A295735 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 0; a(1) = -1, a(2) = 0, a(3) = 1. %F A295735 G.f.: -3/(-1 + x + x^2) + (3 + 4*x)/(-1 + 2*x^2). %t A295735 LinearRecurrence[{1, 3, -2, -2}, {0, -1, 0, 1}, 100] %Y A295735 Cf. A001622, A000045, A005672. %K A295735 easy,sign %O A295735 0,5 %A A295735 _Clark Kimberling_, Nov 30 2017