cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295735 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 0, a(1) = -1, a(2) = 0, a(3) = 1.

This page as a plain text file.
%I A295735 #9 Nov 24 2024 00:05:35
%S A295735 0,-1,0,1,3,8,15,31,54,101,171,304,507,875,1446,2449,4023,6728,11007,
%T A295735 18247,29766,49037,79827,130912,212787,347795,564678,920665,1493535,
%U A295735 2430584,3940503,6403855,10377126,16846517,27289179,44266768,71687019,116215931
%N A295735 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 0, a(1) = -1, a(2) = 0, a(3) = 1.
%C A295735 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
%H A295735 Clark Kimberling, <a href="/A295735/b295735.txt">Table of n, a(n) for n = 0..2000</a>
%H A295735 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-2,-2).
%F A295735 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 0; a(1) = -1, a(2) = 0, a(3) = 1.
%F A295735 G.f.: -3/(-1 + x + x^2) + (3 + 4*x)/(-1 + 2*x^2).
%t A295735 LinearRecurrence[{1, 3, -2, -2}, {0, -1, 0, 1}, 100]
%Y A295735 Cf. A001622, A000045, A005672.
%K A295735 easy,sign
%O A295735 0,5
%A A295735 _Clark Kimberling_, Nov 30 2017