This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295736 #6 Aug 27 2021 21:03:55 %S A295736 1,-2,-2,1,-3,8,1,29,22,91,97,268,333,761,1030,2111,3013,5764,8521, %T A295736 15565,23574,41699,64249,111068,173269,294577,463750,778807,1234365, %U A295736 2054132,3272113,5408165,8647510,14219515,22801489,37348684,60019101,98023145,157780102 %N A295736 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = -2, a(2) = -2, a(3) = 1. %C A295736 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045). %H A295736 Clark Kimberling, <a href="/A295736/b295736.txt">Table of n, a(n) for n = 0..2000</a> %H A295736 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, -2, -2) %F A295736 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1; a(1) = -2, a(2) = -2, a(3) = 1. %F A295736 G.f.: (1 - 3 x - 3 x^2 + 11 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4). %t A295736 LinearRecurrence[{1, 3, -2, -2}, {1, -2, -2, 1}, 100] %Y A295736 Cf. A001622, A000045, A005672. %K A295736 easy,sign %O A295736 0,2 %A A295736 _Clark Kimberling_, Nov 30 2017