cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295737 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = -1, a(2) = -1, a(3) = 2.

This page as a plain text file.
%I A295737 #6 Aug 27 2021 21:04:04
%S A295737 1,-1,-1,2,-1,9,4,29,25,86,95,245,308,681,925,1862,2659,5033,7436,
%T A295737 13493,20417,35958,55351,95405,148708,252305,396917,665606,1054331,
%U A295737 1752705,2790652,4608893,7366777,12106742,19407983,31776869,51053780,83354937,134146573
%N A295737 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = -1, a(2) = -1, a(3) = 2.
%C A295737 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
%H A295737 Clark Kimberling, <a href="/A295737/b295737.txt">Table of n, a(n) for n = 0..2000</a>
%H A295737 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, -2, -2)
%F A295737 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1; a(1) = -1, a(2) = -1, a(3) = 2.
%F A295737 G.f.: (1 - 2 x - 3 x^2 + 8 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4).
%t A295737 LinearRecurrence[{1, 3, -2, -2}, {1, -1, -1, 2}, 100]
%Y A295737 Cf. A001622, A000045, A005672.
%K A295737 easy,sign
%O A295737 0,4
%A A295737 _Clark Kimberling_, Nov 30 2017