A295755 Solution of the complementary equation a(n) = a(n-1) + a(n-3) + a(n-4) + b(n-3), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, b(0) = 5, b(1) = 6, b(2) = 7, b(3) = 8, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 3, 4, 13, 25, 40, 66, 114, 190, 308, 502, 821, 1335, 2162, 3503, 5678, 9195, 14881, 24084, 38980, 63080, 102071, 165162, 267250, 432430, 699693, 1132136, 1831848, 2964004, 4795867, 7759886, 12555774, 20315682, 32871473, 53187172, 86058669, 139245866
Offset: 0
Examples
a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, b(0) = 5, b(1) = 6, b(2) = 7, b(3) = 8, so that b(4) = 9 (least "new number") a(4) = a(3) + a(1) + a(0) + b(1) = 13 Complement: (b(n)) = (5, 6, 7, 8, 9, 10, 11, 12, 14, 15, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; a[2] = 3; a[3] = 4; b[0] = 5; b[1] = 6; b[2] = 7; b[3] = 8; a[n_] := a[n] = a[n - 1] + a[n - 3] + a[n - 4] + b[n - 3]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; z = 36; Table[a[n], {n, 0, z}] (* A295755 *) Table[b[n], {n, 0, 20}] (*complement *)
Comments