A295756 Solution of the complementary equation a(n) = a(n-1) + a(n-3) + a(n-4) + b(n-2), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, b(0) = 5, b(1) = 6, b(2) = 7, b(3) = 8, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 3, 4, 14, 27, 43, 71, 123, 205, 332, 541, 885, 1439, 2330, 3775, 6119, 9909, 16036, 25953, 42005, 67975, 109990, 177976, 287985, 465980, 753977, 1219970, 1973968, 3193959, 5167941, 8361915, 13529879, 21891817, 35421712, 57313546, 92735283, 150048854
Offset: 0
Examples
a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, b(0) = 5, b(1) = 6, b(2) = 7, b(3) = 8, so that b(4) = 9 (least "new number") a(4) = a(3) + a(1) + a(0) + b(2) = 14 Complement: (b(n)) = (5, 6, 7, 8, 9, 10, 11, 12, 13, 15, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; a[2] = 3; a[3] = 4; b[0] = 5; b[1] = 6; b[2] = 7; b[3] = 8; a[n_] := a[n] = a[n - 1] + a[n - 3] + a[n - 4] + b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; z = 36; Table[a[n], {n, 0, z}] (* A295756 *) Table[b[n], {n, 0, 20}] (*complement *)
Comments