A295757 Solution of the complementary equation a(n) = a(n-1) + a(n-3) + a(n-4) + b(n-1), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, b(0) = 5, b(1) = 6, b(2) = 7, b(3) = 8, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 3, 4, 15, 29, 46, 76, 132, 220, 356, 580, 949, 1543, 2498, 4047, 6560, 10623, 17191, 27822, 45030, 72870, 117910, 190790, 308720, 499531, 808263, 1307806, 2116091, 3423920, 5540025, 8963959, 14504008, 23467992, 37972016, 61440024, 99412066, 160852117
Offset: 0
Examples
a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, b(0) = 5, b(1) = 6, b(2) = 7, b(3) = 8, so that b(4) = 9 (least "new number") a(4) = a(3) + a(1) + a(0) + b(3) = 15 Complement: (b(n)) = (5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; a[2] = 3; a[3] = 4; b[0] = 5; b[1] = 6; b[2] = 7; b[3] = 8; a[n_] := a[n] = a[n - 1] + a[n - 3] + a[n - 4] + b[n - 1]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; z = 36; Table[a[n], {n, 0, z}] (* A295757 *) Table[b[n], {n, 0, 20}] (*complement *)
Comments