This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295758 #7 Oct 02 2020 15:52:34 %S A295758 1,1,3,15,113,1105,13219,187103,3058113,56675297,1174295267, %T A295758 26898243439,674916701169,18409502066097,542373965958595, %U A295758 17164148092886207,580677914417571585,20913258579319759041,798876414332323236931,32261582928825038942671,1373304514339211081661169 %N A295758 O.g.f.: Sum_{n>=0} Product_{k=1..n} tan( (2*k-1)*arctan(x) ). %H A295758 Vaclav Kotesovec, <a href="/A295758/b295758.txt">Table of n, a(n) for n = 0..220</a> %F A295758 a(n) ~ 2^n * n^n / (exp(n) * G^(n + 1/2)), where G is the Catalan constant A006752. - _Vaclav Kotesovec_, Oct 02 2020 %e A295758 O.g.f: A(x) = 1 + x + 3*x^2 + 15*x^3 + 113*x^4 + 1105*x^5 + 13219*x^6 + 187103*x^7 + 3058113*x^8 + 56675297*x^9 + 1174295267*x^10 + ... %e A295758 such that %e A295758 A(x) = 1 + x + x*tan(3*arctan(x)) + x*tan(3*arctan(x))*tan(5*arctan(x)) + x*tan(3*arctan(x))*tan(5*arctan(x))*tan(7*arctan(x)) + x*tan(3*arctan(x))*tan(5*arctan(x))*tan(7*arctan(x))*tan(9*arctan(x)) + ... %o A295758 (PARI) {a(n)=local(X=x+x*O(x^n), Gf); Gf=sum(m=0, n, prod(k=1, m, tan((2*k-1)*atan(X)))); polcoeff(Gf, n)} %o A295758 for(n=0,30,print1(a(n),", ")) %Y A295758 Cf. A177381, A295759. %K A295758 nonn %O A295758 0,3 %A A295758 _Paul D. Hanna_, Jan 28 2018