A295768 Triangular numbers that can be represented as a sum of two distinct triangular numbers, and as a product of two triangular numbers greater than 1.
990, 1540, 2850, 4851, 8778, 11781, 15400, 26796, 43956, 61425, 61776, 70125, 105570, 145530, 176715, 189420, 270480, 303810, 349866, 437580, 526851, 715806, 719400, 749700, 799480, 810901, 828828, 1037520, 1050525, 1185030, 1493856, 1788886, 1921780, 2001000
Offset: 1
Keywords
Examples
990 is representable as a product of two triangular numbers, 990 = 660 * 15, and as a sum, 990 = 780 + 210, therefore 990 is in the sequence.
Programs
-
Mathematica
maxTerm = 3*10^6; imax = Ceiling[(Sqrt[8*maxTerm + 1] - 1)/2]; TriangularQ[n_] := IntegerQ[Sqrt[8n + 1]]; t[op_] := Table[If[1 < i < j, op[i*(i + 1)/2 , j*(j + 1)/2], Nothing], {i, 2, imax}, {j, i + 1, imax}] // Flatten // Select[#, # <= maxTerm && TriangularQ[#]&]& // Union; Intersection[t[Plus], t[Times]] (* Jean-François Alcover, Dec 05 2017 *)
Comments