This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295769 #9 Dec 22 2017 10:06:03 %S A295769 630,990,4095,15400,19110,25200,37128,61425,79800,105570,122265, %T A295769 145530,176715,192510,437580,500500,749700,828828,1185030,2031120, %U A295769 2162160,2821500,4279275,4573800,4744740,4959675,5364450,6053460,7556328,8817900,13857480,15992340 %N A295769 Triangular numbers that can be represented as a product of two triangular numbers greater than 1, and as a product of three triangular numbers greater than 1. %C A295769 Duplicates in the products are allowed. %C A295769 A subsequence of A188630. %e A295769 630 = 105*6 = 21*10*3. %e A295769 990 = 66*15 = 55*6*3. %p A295769 A295769 := proc(limit) local t,E,G,n,k,j,c,b,d,ist; E:=NULL; G:=NULL; %p A295769 t := proc(n) option remember; iquo(n*(n+1), 2) end; %p A295769 ist := proc(n) option remember; n = t(floor(sqrt(2*n))) end; %p A295769 for n from 2 do %p A295769 c := t(n); if c > limit then break fi; %p A295769 for k from 2 do %p A295769 b := c*t(k); if b > limit then break fi; %p A295769 if ist(b) then E := E, b fi; %p A295769 for j from 2 do %p A295769 d := b*t(j); if d > limit then break fi; %p A295769 if ist(d) then G := G, d fi %p A295769 od od od; {E} intersect {G} end: %p A295769 A295769(200000); # _Peter Luschny_, Dec 21 2017 %Y A295769 Cf. A000217, A188630. %K A295769 nonn %O A295769 1,1 %A A295769 _Alex Ratushnyak_, Nov 27 2017