cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295788 Coefficients in expansion of (E_10/E_2^10)^(1/4).

This page as a plain text file.
%I A295788 #18 Jun 03 2018 08:37:35
%S A295788 1,-6,-41652,-11504904,-4378103178,-1652544433080,-700184843900712,
%T A295788 -302796005909941632,-136251754253507319300,-62421509259448987324542,
%U A295788 -29147951871527035454309160,-13787807362002100397282325912
%N A295788 Coefficients in expansion of (E_10/E_2^10)^(1/4).
%H A295788 Seiichi Manyama, <a href="/A295788/b295788.txt">Table of n, a(n) for n = 0..367</a>
%F A295788 a(n) ~ -Pi^4 * exp(2*Pi*n) / (3^(7/4) * 2^(15/4) * Gamma(3/4)^7 * n^(5/4)). - _Vaclav Kotesovec_, Jun 03 2018
%t A295788 terms = 12;
%t A295788 E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
%t A295788 E10[x_] = 1 - 264*Sum[k^9*x^k/(1 - x^k), {k, 1, terms}];
%t A295788 (E10[x]/E2[x]^10)^(1/4) + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 26 2018 *)
%Y A295788 Cf. A110150, A294976, A294978, A299712.
%K A295788 sign
%O A295788 0,2
%A A295788 _Seiichi Manyama_, Feb 13 2018