This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295792 #13 Mar 27 2019 10:03:08 %S A295792 1,2,6,28,152,1008,7936,70208,689664,7618816,92013824,1202362368, %T A295792 17053410304,258928934912,4197838491648,72840915607552, %U A295792 1334630802489344,25799982480556032,527187369241870336,11292834065764450304,253498950169144590336,5965951790211865772032,146341359815078034538496 %N A295792 Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(1/k). %C A295792 Convolution of A028342 and A168243. - _Vaclav Kotesovec_, Sep 07 2018 %H A295792 Vaclav Kotesovec, <a href="/A295792/b295792.txt">Table of n, a(n) for n = 0..445</a> %F A295792 E.g.f.: exp(2*Sum_{k>=1} A001227(k)*x^k/k). %F A295792 E.g.f.: exp(Sum_{k>=1} A054844(k)*x^k/k). %p A295792 a:=series(mul(((1+x^k)/(1-x^k))^(1/k),k=1..100),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # _Paolo P. Lava_, Mar 27 2019 %t A295792 nmax = 22; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! %Y A295792 Cf. A001227, A028342, A028343, A054844, A156616, A168243, A206303, A294356. %K A295792 nonn %O A295792 0,2 %A A295792 _Ilya Gutkovskiy_, Nov 27 2017